How Cellulose Stretches: Synergism between Covalent and Hydrogen Bonding
نویسندگان
چکیده
Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C-O-C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk.
منابع مشابه
Deformation of cellulose allomorphs studied by molecular dynamics
Cellulose-based materials draw their good mechanical properties from the cellulose crystal. Improved understanding of crystal properties could lead to a wider range of applications for cellulose-based materials, Cellulose crystals show high axial Youngs modulus. Cellulose can attain several allomorphic forms which show unique structural arrangements in terms of both intra-molecular and intermol...
متن کاملSimulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
We have modeled the transformation of cellulose Iβ to a high temperature (550 K) structure, which is considered to be the first step in cellulose pyrolysis. We have performed molecular dynamics simulations at constant pressure using the GROMOS 45a4 united atom forcefield. To test the forcefield, we computed the density, thermal expansion coefficient, total dipole moment, and dielectric constant...
متن کاملA coarse-grained model for synergistic action of multiple enzymes on cellulose
BACKGROUND Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosi...
متن کاملNon-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors.
Quantitative studies of the 1 : 1 complexes formed between perfluorohexyl iodide and a variety of hydrogen-bond acceptors have been used to probe the relationship between halogen bonding, hydrogen bonding, desolvation and the electrostatics of non-covalent interactions.
متن کاملBioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.
Inspired by the nacre, we demonstrated the integrated ternary artificial nacre nanocomposites through synergistic toughening of graphene oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent bonding was introduced between adjacent GO nanosheets. The synergistic toughening effects from building blocks of one-dimensional NFC and two-dimensional GO, interface interactions of hydr...
متن کامل